Social Media Means
Photo by cottonbro studio Pexels Logo Photo: cottonbro studio

What is the biggest infinity?

The Absolute Infinite (symbol: Ω) is an extension of the idea of infinity proposed by mathematician Georg Cantor. It can be thought of as a number that is bigger than any other conceivable or inconceivable quantity, either finite or transfinite.

Does Amazon pay for advertising?
Does Amazon pay for advertising?

On average, Amazon advertisers pay $0.81 for every click on their ad. The important thing to remember is that the cost is not set in stone. Your...

Read More »
Does a return fee affect credit score?
Does a return fee affect credit score?

Your returned check won't be reported to the credit bureaus if you make good on the payment, so your credit score won't be impacted. The missed...

Read More »

Biggest number ever imagined

The Absolute Infinite (symbol: Ω) is an extension of the idea of infinity proposed by mathematician Georg Cantor. It can be thought of as a number that is bigger than any other conceivable or inconceivable quantity, either finite or transfinite. Cantor linked the Absolute Infinite with God,[1][2]: 175 [3]: 556 and believed that it had various mathematical properties, including the reflection principle: every property of the Absolute Infinite is also held by some smaller object.[4][clarification needed]

Cantor's view [ edit ]

Cantor said:

The actual infinite was distinguished by three relations: first, as it is realized in the supreme perfection, in the completely independent, extra worldly existence, in Deo, where I call it absolute infinite or simply absolute; second to the extent that it is represented in the dependent, creatural world; third as it can be conceived in abstracto in thought as a mathematical magnitude, number or order type. In the latter two relations, where it obviously reveals itself as limited and capable for further proliferation and hence familiar to the finite, I call it Transfinitum and strongly contrast it with the absolute.[5] Cantor also mentioned the idea in his letters to Richard Dedekind (text in square brackets not present in original):[7] A multiplicity [he appears to mean what we now call a set] is called well-ordered if it fulfills the condition that every sub-multiplicity has a first element; such a multiplicity I call for short a "sequence".

...

Now I envisage the system of all [ordinal] numbers and denote it Ω.

...

The system Ω in its natural ordering according to magnitude is a "sequence". Now let us adjoin 0 as an additional element to this sequence, and place it, obviously, in the first position; then we obtain a sequence Ω′: 0, 1, 2, 3, ... ω 0 , ω 0 +1, ..., γ, ... of which one can readily convince oneself that every number γ occurring in it is the type [i.e., order-type] of the sequence of all its preceding elements (including 0). (The sequence Ω has this property first for ω 0 +1. [ω 0 +1 should be ω 0 .]) Now Ω′ (and therefore also Ω) cannot be a consistent multiplicity. For if Ω′ were consistent, then as a well-ordered set, a number δ would correspond to it which would be greater than all numbers of the system Ω; the number δ, however, also belongs to the system Ω, because it comprises all numbers. Thus δ would be greater than δ, which is a contradiction. Therefore: The system Ω of all [ordinal] numbers is an inconsistent, absolutely infinite multiplicity.

How much do Amazon influencers make?
How much do Amazon influencers make?

Influencer earnings vary from a few bucks per month to thousands of dollars. It all depends on how many sales they generate from their links....

Read More »
Can you live on 50K a year?
Can you live on 50K a year?

For many people, $50,000 is enough income to live comfortably, although your location and lifestyle are important factors. In coastal cities, that...

Read More »

The Burali-Forti paradox [ edit ]

The idea that the collection of all ordinal numbers cannot logically exist seems paradoxical to many. This is related to Cesare Burali-Forti's "paradox" which states that there can be no greatest ordinal number. All of these problems can be traced back to the idea that, for every property that can be logically defined, there exists a set of all objects that have that property. However, as in Cantor's argument (above), this idea leads to difficulties. More generally, as noted by A. W. Moore, there can be no end to the process of set formation, and thus no such thing as the totality of all sets, or the set hierarchy. Any such totality would itself have to be a set, thus lying somewhere within the hierarchy and thus failing to contain every set. A standard solution to this problem is found in Zermelo's set theory, which does not allow the unrestricted formation of sets from arbitrary properties. Rather, we may form the set of all objects that have a given property and lie in some given set (Zermelo's Axiom of Separation). This allows for the formation of sets based on properties, in a limited sense, while (hopefully) preserving the consistency of the theory. While this solves the logical problem, one could argue that the philosophical problem remains. It seems natural that a set of individuals ought to exist, so long as the individuals exist. Indeed, naive set theory might be said to be based on this notion. Although Zermelo's fix allows a class to describe arbitrary (possibly "large") entities, these predicates of the meta-language may have no formal existence (i.e., as a set) within the theory. For example, the class of all sets would be a proper class. This is philosophically unsatisfying to some and has motivated additional work in set theory and other methods of formalizing the foundations of mathematics such as New Foundations by Willard Van Orman Quine.

See also [ edit ]

Notes [ edit ]

What is the most liked IG post?
What is the most liked IG post?

The most-liked post on Instagram is a carousel of footballer Lionel Messi and his teammates celebrating winning the 2022 FIFA World Cup, which has...

Read More »
What happens after 1,000 followers on Instagram?
What happens after 1,000 followers on Instagram?

Growth is always a good indicator of a successful, thriving account and once you have 1,000 followers, a lot of monetization opens up for you. All...

Read More »
Does timing matter on TikTok?
Does timing matter on TikTok?

TikTok posting times are essential to triggering the algorithm and getting your videos more views. TikTok's algorithm decides whether to push a...

Read More »
How do you write an attractive job ad?
How do you write an attractive job ad?

Start with a clear job title and start date. ... Tell your company's story. ... Talk about the specific team the new employee will join. ... Set...

Read More »